Introducción a Hardware de tornillo La tornillería es un componente fundamental en proyectos de construcción, fabricación y bricolaje. Desempeña un papel fundamental en la unión segura de ...
LEER MÁSIntroducción a Hardware de tornillo La tornillería es un componente fundamental en proyectos de construcción, fabricación y bricolaje. Desempeña un papel fundamental en la unión segura de ...
LEER MÁSIntroducción a Pernos cruzados de cabeza redonda Los pernos transversales de cabeza redonda son un tipo de sujetador ampliamente utilizado en construcción, maquinaria y aplicaciones indust...
LEER MÁSIntroducción a las tuercas de cobre, acero y latón Las tuercas son sujetadores esenciales que se utilizan en diversas aplicaciones mecánicas, eléctricas y de construcción. Entre los materiales m...
LEER MÁSIntroducción a Tornillos de acero al carbono Los tornillos de acero al carbono se utilizan ampliamente en la construcción, maquinaria industrial y ensamblajes de alta resistencia debido a ...
LEER MÁSPerno de acero al carbono Guía de proveedores: lo que los compradores deben buscar Seleccionar el proveedor adecuado para pernos de acero al carbono afecta el rendimiento, la segu...
LEER MÁSIntroducción: la base de los sistemas mecánicos En el intrincado mundo de la fabricación y la ingeniería modernas, piezas mecanizadas Forman los componente...
LEER MÁSPor qué es importante la integridad estructural En la construcción, la maquinaria y otras aplicaciones industriales, la integridad estructural es crucial para la seguridad, el rendimiento y la l...
LEER MÁSIntroducción a los sujetadores de acero inoxidable Los sujetadores de acero inoxidable se usan ampliamente en construcción, maquinaria y aplicaciones industriales debido a su resistencia a la co...
LEER MÁSComprender el irritado y el pelado de hilos Tornillos de acero inoxidable son propensos a irritarse y pelarse las roscas debido a su alta resistencia a la corrosión y dureza. El irritamien...
LEER MÁSResumen: objetivo de elegir el contenido de carbono adecuado Elegir entre un alto- perno de acero al carbono y un perno de acero con bajo contenido de carbono es una decisión impulsada po...
LEER MÁSVentajas prácticas de Piezas de plástico para automóviles Las piezas de plástico para automóviles se utilizan ampliamente para mejorar el rendimiento y la eficiencia de los vehículos. Esto...
LEER MÁS1. Descripción general de Tuercas de acero inoxidable y sus aplicaciones Las tuercas de acero inoxidable son sujetadores roscados ampliamente utilizados para asegurar pernos o varillas ro...
LEER MÁS¿Qué tecnologías antiaflojamiento pueden garantizar el efecto de apriete de los tornillos?
Tecnologías antiaflojamiento para garantizar tornillo Los efectos de apriete incluyen principalmente los siguientes, especialmente en entornos de vibración:
Bloqueo mecánico y antiaflojamiento: el efecto antiaflojamiento se logra mediante el uso de componentes mecánicos como arandelas de tope, chavetas y cables en serie para evitar la rotación relativa entre pernos y tuercas.
Fricción y antiaflojamiento: utilice una mayor fricción entre las superficies de contacto para evitar el aflojamiento. Esto se puede lograr usando arandelas con texturas o materiales especiales (como arandelas de resorte, arandelas dentadas) o aplicando pegamento de bloqueo a la superficie de contacto.
Antiaflojamiento no desmontable: El par de hilos se fija mediante soldadura, remachado o pegado. Aunque esto sacrificará la capacidad de desmontaje del perno, es muy eficaz en situaciones en las que no es necesario un desmontaje repetido.
Bloqueo y antiaflojamiento de la fuerza de apriete previo: aplique suficiente fuerza de apriete previo para garantizar la estabilidad de la conexión y, al mismo tiempo, coopere con la tecnología de apriete adecuada, como el método de torsión o el método de torsión-ángulo, para mejorar la consistencia y confiabilidad del apriete.
Pernos autoblocantes: las estructuras de pernos especialmente diseñadas, como las tuercas dobles autoblocantes integradas, pueden producir efectos antiaflojamiento adicionales al apretar.
Pegamento químico para evitar que se afloje: utilice pegamento especial de bloqueo o pegamento anaeróbico. Estos pegamentos se endurecerán en condiciones específicas (como el aislamiento del aire y el contacto del metal) para fijar pernos y tuercas.
Procesamiento MEC: una tecnología de procesamiento especial que procesa una mezcla de microcápsulas que contienen adhesivos en el lugar del perno. Cuando se aprieta el perno, la cápsula se rompe y el agente de bloqueo se polimeriza para proporcionar un efecto antiaflojamiento adicional.
Prueba de vibración lateral: realice una prueba de vibración en el sistema de conexión de pernos para verificar la efectividad de diferentes medidas antiaflojamiento y seleccione la mejor tecnología antiaflojamiento según los resultados de la prueba.
Cada tecnología antiaflojamiento tiene sus escenarios de aplicación, ventajas y desventajas específicas, y qué tecnología elegir depende de los requisitos específicos de la conexión atornillada, el presupuesto de costos y la viabilidad del mantenimiento. En aplicaciones prácticas, puede ser necesario combinar múltiples tecnologías antiaflojamiento para lograr el mejor efecto de sujeción.
¿Cómo se dividen los grados de resistencia de los pernos?
Los pernos son sujetadores importantes para conectar varios componentes mecánicos y la clasificación de sus niveles de resistencia es crucial para garantizar la seguridad y confiabilidad de la estructura mecánica. El grado de resistencia de los pernos generalmente se determina en función de la resistencia a la tracción y el límite elástico de su material y sigue los estándares internacionales.
Identificación del grado de resistencia del perno
El grado de resistencia de un perno generalmente consta de dos números, como 4,6, 8,8, 10,9, etc. Estos números representan las propiedades específicas del material del perno:
El primer número: indica la resistencia nominal a la tracción del material del perno, en MPa (MPa), que es 1/100 del límite de resistencia a la tracción. Por ejemplo, la resistencia nominal a la tracción de un perno de grado 8,8 es de 880 MPa.
El número después del punto decimal: indica la relación de límite elástico del material del perno, que es 10 veces la relación entre el límite elástico y el límite de resistencia a la tracción. Por ejemplo, un perno de grado 8.8 tiene un índice de elasticidad de 0,8, lo que significa que su límite elástico nominal es el 80% de 880 MPa o 704 MPa.
Selección del grado de resistencia del perno.
El grado de resistencia del perno debe seleccionarse en función de la capacidad de carga requerida y los requisitos de diseño de los componentes conectados. Los pernos de alta resistencia (como los de grado 8.8 y superiores) generalmente están hechos de acero de aleación con bajo contenido de carbono o acero con contenido medio de carbono y se tratan térmicamente para mejorar sus propiedades mecánicas. Por el contrario, los pernos ordinarios (como los de grado 4.6, grado 5.6) suelen estar hechos de acero al carbono y no requieren tratamiento térmico.
Aplicación del grado de resistencia de los pernos.
Diferentes escenarios de aplicación tienen diferentes requisitos de resistencia para los pernos. Por ejemplo:
Industria automotriz: los pernos de alta resistencia se utilizan ampliamente ya que deben soportar cargas elevadas y cargas de impacto.
Estructuras de construcción: Alta resistencia pernos También se utilizan, especialmente donde se requieren cargas dinámicas o donde se requiere antiaflojamiento.
Conexiones mecánicas ordinarias: Se pueden utilizar pernos ordinarios ya que son menos costosos y suficientes para soportar los requisitos de carga más bajos.
Norma internacional para grados de resistencia de pernos
El grado de resistencia de los pernos sigue estándares internacionales, como ISO (Organización Internacional de Normalización) y DIN (Normas Industriales Alemanas), así como estándares nacionales de varios países, como ASTM en Estados Unidos, GB en China, etc. Los estándares garantizan un rendimiento constante entre pernos del mismo grado producidos por diferentes fabricantes.
El grado de resistencia de los pernos es un parámetro clave en el diseño y selección de pernos, que está directamente relacionado con la confiabilidad y seguridad de las conexiones de pernos. Conocer el grado de resistencia de un perno ayuda a los ingenieros y técnicos a tomar buenas decisiones durante el proceso de diseño y fabricación. Con el desarrollo de la tecnología, las mejoras en los materiales de los pernos y los procesos de fabricación mejorarán aún más el rendimiento de los pernos y cumplirán requisitos industriales más estrictos.